
(NASA-CR-195971) PARALLEL[ZATION

AND VISUAL ANALYSIS OF

MULTIDIMENSIONAL FIELDS:

APPLICATION TO OZONE PR_DUCTION_

0FSTRUCTION, AND TRANSPORT IN THREE

0[MENSIONS Annual Progress Report

(Georgia Inst. of Tech.) 31 p G3145

N95-12798

Unclas

0027546

NASh-CR-Iq_9_

Annual Progress Report:

Parallelization and Visual Analysis of Multidimensional Fields:

Application to Ozone Production, Destruction, and Transport in

Three Dimensions
i /Zi7_ /< ./I),:

Grant No. NAGW-3886
/ ,/I./-:7/j _:-/-2--

Karsten Schwan G _'I-7-/

Oct. 199_

College of Computing

Georgia Institute of Technology

Atlanta, Georgia 30332

e-mail: schwan@cc.gatech.edu

fax: 404-853-9378

1 Introduction

List of investigators:

Karsten Schwan, College of Computing

Fred Alyea, Earth and Atmospheric Sciences

M. William Ribarsky, Information Technology

Mary Trauner, Information Technology

Greg Eisenhauer, student, College of Computing

Yves Jean, student, College of Computing

List of associated investigators (not funded by NASA):

Thomas Kindler, student, Earth and Atmospheric Sciences

Dilma Silva, student, College of Computing

Jeffrey Vetter, student, College of Computing (funded by separate NASA GSRP grant).

This brief report is being submitted for review by Glenn Mucklow, project manager for NASA

grant NAGW-3886. The report contains a brief outline of our progress to date, followed by a

copy of a draft of a research paper describing some details of our work, about to be submitted for

publication. A previous report (submitted July 1994) already included additional research papers

produced from related research, but not directly funded by ARPA. Materials sent in this report

are also available via the Internet on Mosaic at:

h ttp: / /www / gatech /edu /scivis / projects / pro jects.html

2 Progress to date

This project was initiated approximately 8 months ago. We have spent these months performing
the following tasks:

* Task 1: Parallelization of Atmospheric Modeling Code:

- Preparation of standard FORTRAN code version for parallelization; conversion of major

code modules from Fortran to C for enhanced portability of code across the SUN Spare,

SGI, and KSR platforms used by our group: in progress, with next steps concerning code

parallelization for non-shared memory platforms, including the new IBM SP-2 machine

being acquired by Georgia Tech and to be installed Dec. 1994.

- Parallelization results attained with earlier prototype of modeling code, which has now

also been validated: first publication is now ready for submission (draft included with

this report); ongoing work concerns additional performance evaluation, porting to non-

shared memory architectures, and making this code interactive (see below).

- Design and implementation are also underway for the on-line monitoring of distributed
target machines.

• Task 2: On-line program monitoring and steering:

- An on-line monitoring library has been completed with the CThreads parallel program-

ming library and is now available via Internet FTP; a paper, test programs and CThreads

graphical performance views can be viewed interactively via mosaic at "http://www.gatech.edu/
steering/html".

- design of support for on-line steering has been completed, initial implementation has

also been completed; we are now instrumenting the parallel atmospheric modeling code

for on-line steering and monitoring; the purpose of such steering will be to permit at-

mospheric modelers to play 'what if' games with their code (e.g., what if chemical

concentrations have certain values? what if the following methods are used for vertical
transport?).

- On-line monitoring and steering concerning the atmospheric modeling code are also

addressing performance monitoring and on-line code configuration for performance im-

provement (e.g., load balancing), which is a significant problem with maay large-scale
parallel codes.

- Implementation is underway for construction of a benchmark program whicb uses syn-

thetic workloads for evaluation of network and I/O loads imposed by remote visualiza-

tion/monltoring/steering.

- The atmospheric modeling code is now being made on-line, implying the on-li._e retrieval

of actual satellite observations from both NASA and UARS data sets, the on-line use of

those observations in the model, and the subsequent on-line output and visualization of

model output, in the future to be done side-by-side with visuahzations of" observahonal
data.

• Task 3: on-line visualization and animation:

- The SGI Explorer environment is being used for visualization of the data sets produced

and consumed by atmospheric modeling codes: data has been imported into the SGI

environment and data sets output by the atmospheric models are fully documented;

additional work is addressing more useful visualizations based on the common graphics

libraries used by atmospheric researchers in the SGI environment.

- Software integration: development of a programming library for exchange of complex bi-

nary files between different machines and between Fortran and C in order to make future

data exchanges acros_ programs and machines easier: the library uses self-describing file

formats and has been made available via the Internet to other researchers; as a result,

visualization processing can be performed on any machine attached via network to the

parallel machine generating output data.

- Development of basic tools part of the Glyphmaker environment, to facilitate future

visualizations useful for atmospheric modeling codes; import of atmospheric modeling

data from SGI Explorer to the Glyphmaker environment has been completed. In addi-

tion, Glyphmaker is being ported out of the Explorer environment for increased speed

and interactivity.

- Implementation of Glyphmaker-based visualizations specifically useful for the atmo-

spheric modeling environment.

- Use of Motif-based animations for performance visualization and for program steering

of parallel threads programs: initial results can be viewed on mosaic in conjunction with

the monitoring work mentioned above.

ToUr in Concurrency: Practice and Experience

A Parallel Spectral Model for Atmospheric Transport Processes

Thomas Kindler 1'_, Karsten Schwan a, Dilma Silva 3, Mary Trauner a, Fred Alyea 1

1School of Earth and Atmospheric Sciences, Georgia Institute of Technology,

Atlaxlta, Georgia 30332

_Paul Scherrer Institute, CH-5232 Villigen, Switzerland

3College of Computing,Georgia Institute of Technology, Atlanta, Georgia 30332

DRAFT

October I0, 1994

1 Introduction

Atmospheric modeling is a grand challenge problem for severn reasons, including its inordinate

computational requirements and its generation of large amounts of data concurrent with its use of

very large data sets derived from measurement instruments like satellites. In addition, atmospheric

models are typically run severn times, on new data sets or to re-process existing data sets, to

investigate or re-investigate specific chemical or physical processes occurring in the earth's atmo-

sphere, to understand model fidelity with respect to observational data, or simply, to experiment

with specific model parameters or components.

Our group's contributions to the areas of atmospheric modeling and high performance comput-

ing are:

• Parallel model execution - we demonstrate the opportunities for parallelism in a global at-

mospheric modeling code using the spectral solution method, while also evaluating severn

alternative methods for performing such parallelization.

• Interactive model execution and steering - we pursue model parallelization not simply to

speed up model execution, but also to explore the use of parallel machines for on-line model

execution and for steering model computations so that end users can easily experiment with

alternative model parameters, conveniently evaluate and re-evNuate the behavior of specific

processes being modeled, and affect or change model execution to improve performance.

Our approach to on-line model interaction and steering differs from what has already been found

useful for understanding stored model data, where researchers seek to steer their data visualizations

to explore different data domains or even to directly control their virtual reality simulations of such

data. We explore programmer interactions with the running models generating such data sets,

including giving programmers the ability to direct model execution, to influence the data generated

and the computations performed by such models, and to improve model execution performance.

Evidence of the utility of on-line program steering can be found in numerous past publications,

many of which are reviewed in [GVS94].

The specific global atmospheric model implemented as part of this research represents at-

mospheric fields with spherical basis functions, which have been widely used for modeling phe-

nomena like weather prediction, global warming or global change of atmospheric constituents

[DS89, HBB+92]. Spectral models have some advantages over the grid-based models commonly

parallelized in past and current work[WAB+93, ABB+94, BK90, JH89]. For example, spectral

models naturally conserve the area averaged mean square kinetic energy and the mean square

vorticity of wind fields, whereas in grid based models these quantities are either not conserved or

require additional computation when such conservation is important[WP86]. Despite such advan-

tages, grid based models have found wider acceptance in recent research in part because they are

believed (1) to give rise to larger amounts of parallelism than spectral models, and (2) more easily

coupled with grid based models simulating local phenomena (e.g., pollution modeling).

This paper demonstrates that a spectral global transport model can be parallelized quite ef-

ficiently, and that this parallelization can be performed such that the resulting parallel code will

perform well even on large-scale parallel machines (ie., machines with a thousand processors). These

levels of parallelism are achieved by using an alternative parallelization to the one used in previous

work on parallel spectral transport models[BK90], where parallelism is attained by decomposing

atmospheric data along latitudes and/or longitudes. In comparison, our approach also takes ad-

vantage of the relative independence of computations at different levels in the earth's atmosphere,

resulting in parallelism of up to 40 processors, each independently performing computations for dif-

ferent atmospheric levels and requiring few communications between different levels across model

time steps. Next, additional parallelism is attained within each level by taking advantage of the

natural parallelism offered by the spectral computations being performed (eg., taking advantage of

independently computable terms in equations).

Our parallelization strategy and results also differ from the recent, extensive work on parallel

climate models by Foster and Worley[FW94, WF94], most of which was performed concurrently

with our research. Specifically, Foster and Worley investigate message passing machines like the

Intel Paragon, while our work includes a detailed study of performance overheads arising on shared

memory multiprocessors. Parallelism is again attained by use of longitudinal and/or latitudinal

domain decomposition, and then further increased by also parallelizing specific model computations

within different domains (ie., by parallelizing the FFT computations required within each columnar

atmospheric patch). This approach somewhat resembles our own parallelization strategy, in which

parallelism attained from level-based data decomposition is increased by concurrent computation

of specific calculations within each atmospheric level (e.g., term parallelization).

The specific model parallelized in our research is the transport component of climate models.

This enables us to study in detail the performance overheads arising from this component's par-

allelization. Specifically, our transport model simulates the transport of atmospheric constituents

by expanding the used fields in spherical basis functions and then solving the governing differential

equation with a spectral approach. As a result, one specific issue addressed by our work is the effi-

cient implementation, representation, and sharing of the global spectral information shared by all

of the spectral model's computations, while the model's grid-based data is statically decomposed

across different processors' memory units. Such spectral data consists of up to several hundred

complex spectral coordinates per level (253 coordinates for 21 wave resolution, which corresponds

to a horizontal resolution of 6.4 degrees by 6.4 degrees, and 946 coordinates for 42 wave resolu-

tion which corresponds to a vertical resolution of 2.8 degrees by 2.8 degrees). One reason spectral

models were believed difficult to parallelize is that such data must be shared across all processors

of the machine involved in spectral computations. The experimental results shown below demon-

strate that suchsharinginvolvesonly smallcommunicationoverheads,especiallywhencompared
to sharinganyamountsof grid-baseddataalsousedwithin transportand climatemodels.Such
grid dataconsistsof up to severalthousandcomplexnumbersper level (1024numbersfor 21wave
resolutionand 8192numbersfor 42waveresolution).Modelcomputationsrequirethat grid data
issharedamongneighboringgridpoints.

An extensionof the transportmodeldescribedin futurepublicationswill alsoaddresschemical
phenomena.This extensionis expectedto further improveparallelprogramperformance,which
promptsus to expectequallygoodor evenimprovedperformancefor morecomplexatmospheric
chemistrymodelsbasedon the spectraltransportmethodinvestigatedin our research.

The targetmachinesusedin our researcharenetworkedcollectionsof parallelsupercomputers
andworkstationsjointly performingmodelcomputations,dataprocessingandstorage,on-linedata
visualization,andon-lineprogrammonitoringandsteering.Our currentresearchis targetinglocal
areanetworkedmachineslinked to the Internet,with futureextensionsof this researchaddressing
communicationprotocolissuesin highperformancewideareanetworks.Our currentexperimental
testbedconsistsof a 64-nodeKSR-2sharedmemorysupercomputercoupledwith SiliconGraphics
visualizationenginesandIBM RS6000-basedworkstationsusedfor additionalmodelcomputations.
Socket-basednetworkcommunicationsareemployedfor efficientremotevisualizationprocessing,
whilePVM will beusedfor theexecutionof themulti-machine,heterogeneousatmosphericmodels
to beaddressedby our future work.

In the remainderof this paper,we first describethe basicfunctionalityof the spectral-based
globaltransportmodel,followedby a brief validationof its correctnessfrom first principlesand
in comparisonto a Fortran-basedversionof the model in currentusefor atmosphericmodeling
research.In addition,the resultsof a modelsimulationaf a simple,knownspecies(Carbon-14)is
comparedto observations.In Section2.3,wedescribemodelparallelizationandits implementation
on the KSR-1andKSR-2supercomputers.Next,detailedperformancemeasurementsdemonstrate
theopportunitiesfor parallelismat differentlevelsof themodel,followedby anevaluationof costs
arisingfrom the sharingof spectraldata acrossdifferentprocessors.Locality of accessto data
and codeand therefore,modelperformanceis shownhighevenfor fairly smallmodelsanddata
sets.Thenseveralon-linestrategiesfor steeringmodelexecutioncoupledwith thevisualizationof
modeloutputdataarediscussedandshownusefulto researchersin EarthandAtmosphericSciences.
Conclusions and future research addressing model parallelization, steering, and visualization appear
in the last Section.

2 Model Functionality

2.1 The Modeling of Atmospheric Transport Processes

Global transport models are important tools for understanding the distribution of relevant at-

mospheric parameters like the mixing ratios of chemical species and aerosol particles [RTBW941.
Transport models are often coupled with a variety of chemical reaction mechanisms to describe

selected chemical changes of the simulated species during transport. In addition, global transport

models can be coupled with local models for a variety of purposes, including the provision of input

data to the global model generated by outputs of local air pollution models. The purpose of the

transport model developed as part of this research is the investigation of parallelism in transport

model execution. In addition, this model is used to answer scientific questions concerning the

stratospheric-tropospheric exchange mechanism or the distribution of species like Fluorocarbons

(CFC's), Fluorohydrocarbons (CFHC's) or Ozone.

4"

The model's functionality outlined below focuses on the spectral method for modeling atmo-

spheric transport processes. It is elaborated only to the extent necessary for motivating the model's

computational needs and data requirements explained further in Section 2.3. Chemical reaction

mechanisms extending the transport model will be described in future publications. The mathe-

matical formulation of the model is explained briefly in Appendix A and is described in more detail

in several other publications, including [Hau40, Si154, Pla60, KHYK61, WP86].

The Spectral Approach to Solving Global Transport. Any atmospheric constituent Y with

mixing ratio X 1 is subject to a continuity equation involving the constituent. This equation relates

the constituents mixing ratio at each point in space with wind velocity and direction by keeping

the total mass constant. The continuity equation as well as any expansion to it (e.g. diffusion,

chemistry) is usually expanded into spherical coordinates A = longitude, # = sin(C) (¢ = latitude)

and is henceforth called the 'transport equation' in this paper (see equation 7). The spectral

solution method for the transport equation takes advantage of the fact that any variable F(A, #, t)

in a 2 dimensional spherical surface can be approximated by an expansion into a set of orthogonal

spherical basis functions, called spherical harmonics. Furthermore, terms like oF and OF_- _ are more
easily and often more accurately calculated in the spectral domain, compared to solution methods

employing grid-based finite difference schemes. The vertical part of the transport equation on the

other hand is commonly calculated by using finite difference methods.

Programming Atmospheric Transport with Spectral Methods. A typical algorithm for

solving the transport equation using spectral methods consists of the following steps:

1. Transformation of the initial conditions for species Y into the spectral from the grid domain.

2. Calculation of the derivations _ and _ on the right hand side of the Equation 7 (see

Appendix A), for all variables.

3. Transformation of the derivatives of all variables into the grid domain.

4. Calculation of the nonlinear products of the derivations in the grid domain.

5. Transformation of all grid results back into spectral domain, and calculation of remaining

summations of the different terms.

6. Calculation of the time integration in the spectral domain.

7. Return to step 2 for next time step.

Transport models require that the transport equation for species Y is integrated for each time

step for all gridpoints at every level of the atmosphere. Current transport models us up to 42 spec-

tral waves (lMax = 42 which corresponds to 946 spectral points, see Appendix A for explanation)

per model layer [HBB+92], which results in a resolution of about 128 longitude and 84 latitude

gridpoints. The vertical resolutions used in most models assumes between 10 and 40 levels which

corresponds tc an altitude of about 50 km. Temporal time steps of about 15 minutes are necessary

to maintain numerical stability lbr the model calculations. A general overview of the performance

of several different kinds of transport models appears in [Pra92].

I Concentrations of atmospheric trace gases are usually expressed as a ratio between the number of molecules of

species Y and the number of air molecules in a given volume. This is called the mixing ratio of species Y, and is
usually given in parts per million (ppm), parts per billion (ppb), or parts per trillion (ppt).

eych, ¢_.*p a-I ..8

Figure 1: Flow diagram of the sequential versions of STRAT, TRANS21 and TRANS42.

2.2 The Atmospheric Transport Code

The research presented in this paper is based on three codes: 1) STRAT: a sub-program of a global

circulation model described in [CAPP75, CAP80]. This code is originally written in Fortran, with a

newer version also available in C. STRAT runs on workstations like the IBM RS-6000 machines. 2)

TRANS21: a transport code which produces identical results as STRAT but written in C and the

Cthreads parallel programming library[SFG+91]. This code is a prototype used for exploration of

parallelism in atmospheric modeling and will next be employed for certain scientific investigations,

including studies of the global cycle of Nitrous Oxide (N20). 3) TRANS42: a version of TRANS21

employing a higher resolution in the horizontal direction. In the remeining part of the paper we

will refer to either one of TRANS21 or TRANS42 simply by TRANS.

Instead of computing the windfields inside the model, all codes use observed UKMO windfields

[SO93], which are concurrently read from files while the simulation proceeds. The models contain

37 vertical levels starting at the surface (1000mbar) and going up to about 48 km (lmbar). A

triangular spectral truncation with IMax = 21 is used for TRANS21 (T21, which corresponds

to 253 complex spectral data points} to approximate the fields given in the grid domain with 64

longitudinal and 28 latitudinal coordinates. In TRANS42 the truncation is lMax = 21 (T42,

which corresponds to 946 complex spectral data points) which corresponds to 128 longitudinal and

64 latitudinal coordinates in the grid domain. The stepwise numerical time integration is calculated

with an 8-cycle Lorenz-scheme [Lor71] 12 times per day, which leads to an overall time step size of

15 minutes. Therefore, each transformation (the most time consuming part in a spectral model}

has to be performed 96 times per day, including the execution of 13 transformations in total in each

layer, resulting in the computation of 1248 transformations per day and layer. A flow diagram of

the sequential code implementing this model appears in Figure 1.

2.3 Parallelization of the Spectral Transport Code

The TRANS transport codes are parallelized in three ways, which are described and motivated

next:

I To..A I I T.._A I I Te.._ I
I I

I To..o I I Tc..o I
I i

i

I
J TennC J

I I I

I T..,,o I I T.,,.,o I I "r.,.,,o I
I ! !

ILorenz InteoragonI ILorenz intqratlonI ILorenz ,nteeraUonI
I i I

I _..,, I I _°-_, I I "-'* I
I I I

Layer n-I Layer n Layer n+ 1

Figure 2: Schematic representation of layer parailelization. The dots represent processors and the

lines represent spectral data exchange.

1. layer parallelization: each atmospheric layer is computed separately,

2. term parallelization: terms A, B, C, and in Equation 7 are calculated independently, and

3. # parallelization: # loops (e.g., inside the transformations from grid to spectral and spectral

to grid) are distributed across multiple processors.

Given these parallelization strategies, the major data structures within the TRANS code to be

decomposed across the parallel machine's different processors are:

1. grid layer data: data relevant only to a certain layer or term in the grid domain,

2. spectral layer data: data relevant only to a certain layer or term in the spectral domain, and

3. common data: data identical for all layers (e.g., Legendre functions for transformation).

Common data is replicated across all involved processors and is therefore, locally accessibly. Spec-

tral layer data is shared by all processors dealing with a certain layer. The grid layer data is

decomposed along constant #'s and accessed locally by the processor to which this range of #'s

has been assigned. As a result, no movement of grid data is necessary during model computation,

whereas spectral data is shared frequently.

2.3.1 Layer Parallellzation

Grid based global models are typically decomposed (e.g., see [WAB+93]) using a two-dimensional

latitude/longitude domain decomposition, where each subdomain consists of several neighboring

vertical columns extending from the eartl,'s surface to the top layer of the atmosphere aAdiessed

by the model. This decomposition is used for a variety of reasons, including simulation of

only few model layers or attempts to simulate processes that are strongly coupled in the vertical

V°'°'z IL°'°"z

IL.,o.z..,c°,.,..I I

i i
Layer n-1 Layer n

Figure 3: Schematic representation of term parallelization. The dots represent processors and the

lines represent spectral data exchange.

dimension. The specific atmospheric processes investigated by our group do not exhibit a strong

vertical coupling. Furthermore, when using a spectral transport model, vertical coupling is small,

whereas the coupling and therefore, data sharing in the horizontal direction is extensive. This

suggests that a layer-based parallelization is a first appropriate parallelization step for TRANS21
and TRANS42.

A schematic description of layer parallelization applied to TRANS21 appears in Figure 2. Here,

a single computational thread performs all necessary calculations for an entire layer, with each

layer thread mapped to its own processor. Each such processor contains a copy of all data and

thread code, and it also contains the entire layer's grid and spectral data. Exchange of information

between layers is necessary only for neighboring layers for terms C and D in Equation 7 (vertical

derivations). Layer processors also compute the time step integration. Synchronization between

threads is necessary only before each time step integration, in order to ensure that all layers use

updated information before taking each time step. This barrier-like thread synchronization is

programmed using multiple mutex locks, resulting in some small communication overhead between

layer processors and therefore, resulting in almost linear speedup and high computational efficiency,

as demonstrated by the measurements in Section 3.3 below.

2.3.2 Term Parallelization

Term parallelization exploits the fact that for each layer, the terms A, B, C, and D in Equation 7 can

be calculated independently and concurrently, resulting in a parallel program described schemat-

ically in Figure 3. The implementation of this parallelization exploits the ability of the Cthreads

parallel programming library used in this research to dynamically create and delete computational

threads with comparatively low overheads. Such threads, henceforth called helper threads, are exe-

cuted on additional processors not currently used in layer computations. An additional optimization

used in our implementation is to pre-create helper threads, pre-map them to the appropriate pro-

cessors, then simply wake up such threads when they are needed, using the low-level conditional

wait and signal primitives offered by the Cthreads library[Mukgl, GMS94]. Such wakeups are per-

• • • • •

Layer n

Figure 4: Schematic representation of # parallelization. The dots represent processors and the lines
represent spectral data exchange.

formed whenever layer processors have reached the point in time when terms A, B, and C have to

be computed. Layer processors compute the term D themselves, while waiting for the completion

of helper threads computing A, B, and C.

The time integration of the transport equation implies the use of spectral information from all

terms involved, which therefore, results in the exchange of spectral data among processors during

time integration calculations. Furthermore, since term computations differ in length, the computa-
tional loads of helper threads are not balanced. Measurements shown in Section 3.3 demonstrate the

relatively low cost of spectral data exchange. It also shows that the load balancing problem should

be addressed in order to attain significant speedups on large-scale parallel machines. Our future

work will demonstrate that the addition of model computations involving constituent chemistries

can lead to more balanced computational loads when using helper threads.

2.3.3 # Parallelization

The most time consuming steps in terms A,B and C of Equation 7 are the various transformations

between spectral and grid domain performed as part of these computations. In these transforma-

tions and also between different transformations, computations must be performed over all values

of p (latitudes) (see the Appendice A for more detail). A third level of parallelization employed

in the TRANS codes is the decomposition of each term's computation into multiple computations,

each addressing a different region of p values. A schematic representation of this parallelization

appears in Figure 4. This parallelization strategy possesses the potential for the most significant

level of parallelization in our chosen approach. This strategy is also chosen in most other attempts

to parallelize spectral models (see Section 3.7). Theoretically, p calculations can be spread over

the same number of processors as there are latitudes used in the model (actually, most transport

models explicitly compute values for only half the number of total latitudes, because corresponding

latitudes in the northern and southern hemispheres can be transformed together). As shown by

experimental evaluation in Section 3.3, excessively small regions of p values result in increased

communication overheads that prevent increases in speedup even on the fairly tightly coupled KSR

sharedmemorymultiprocessorsemployedin our research.However,theuseof spectralmodelswith
higherresolutionincreasethe usefulnessof this parallelizationstrategydueto resultingincreases
in the lengthsof termcomputations.

2.4 Implementation Characteristics

Two characteristics of the spectral model's implementation not mentioned earlier concern program

portability, extensibility, and its broader use within a project addressing interactive parallel codes.

The TRANS models' implementation is portable to any shared memory parallel machine, cur-

rently including SUN Sparcstations, SGI uni- and multiprocessors, and the KSR-1 and KSR-2

supercomputers. This portability is achieved by use of the Cthreads portable parallel programm-

ming library described in detail in several publications, including [Muk91, GMS94]. This library

hides underlying differences in parallel machines and operating systems by providing a standard

set of constructs for creating and controlling parallel execution threads. For example, for thread

synchronization, mutex locks offered by the library are layered directly on low-level synchronization

hardware offered by the KSR-2 supercomputer, but must employ the operating system-provided
'lock' synchronization constructs existing on the SGI machine. As a result, the performance of mu-

tex locks differs across both machines, but the interface and functionality provided to application

programmers does not change. Model portability to non-shared memory machines is a topic of

research that is addressed in other work by our research group (e.g., see [GMSS94, CMS93, ES94]).

Also important is the model's extensibility to include additional code modules, such as modules

performing chemical calculations for specific constituents. While the implementation of TRANS

does not offer a uniform or self-contained framework for inclusion of additional or complementary

code modules as described in other research[FW94, ES94], TRANS attains limited extensibility and

more importantly, the ability to interact on-line with other programs potentially running on different

machines by using a uniform format for exchange of binary input and output files. This format is

described in detail in [Eis94]. Briefly, it permits programmers to define the formats of expected

input and output data used by their programs, then provides support for translation of these formats

across the language and machine barriers existing between those programs. Based on this format,

the TRANS model's implementation currently shares its input and output files between different

machines (currently including SGI machines, SUN Sparcstations, IBM RS/6000, and the KSR-1

and KSR-2 machines) and different languages (currently including FORTRAN and C programs).

Such sharing is important for several reasons. First, TRANS input files may consist of synthetic or

observational input data, the latter resulting from the UKMO satellite data sets preprocessed by

Fortran 'cleanup' and data interpolation programs. Second, TRANS output is either stored, post-

processed for interpolation to different grid sizes and stored, or post-processed and then input to

on-line data visualizations currently employing SGI Explorer-based visualization tools. In addition,

selected program attributes are directly captured by the Falcon on-line monitoring system described

in more detail in [EGSM94]. The purpose of such on-line monitoring and data visualization is tG

permit programmers to inspect selected program output and even individual program variables,

based on which they can then 'steer' the program's execution toward more useful data domains,

experimental outcomes, play _what if' games, and understand program behavior with different

values for the behavior and cop centrations of atmospheric constituents. If such experimentation is

possible during program execution, the current excessively long cycle from data input, to model

computation, to data output and display can be reduced in time, thereby permitting experimental

._cieiLtists to avoid time-consuming mistakes or simply to evaluate more alternatives in their scientific
endeavors.

1o

o

4o

Io

o

____-=
_=

X

200 400 IWO 800 1000

_=

_=

1200

=
_=

J

400 U m 1000

I

Ct4 1106 _ / (Sin _,'11
1200

Figure 5: Carbon 14 distribution at 70°N for October 1963 (top), April 1964 (middle) and October

1964. The solid lines represent model results and the asterisks represent measurements given by

Johnston. Note that observed windfields from 1993/94 are used for the simulations. Therefore,

model results from 'April 1963' and 'October 1964' in the figure correspond to model output

generated 6 months and 12 month after model initialization derived with windfields from 1993/94,
respectively.

3 Model and Implementation Evaluation

3.1 Model Validation

The parallelized transport model (TRANS) has been validated and compared with the sequential

Fortran version of the same model, called STRAT, which is described in detail in [CAPP75, CAP80].
For further validation, we have also simulated the distribution of radioactive Carbon 14 14C in

the atmosphere after the nuclear bomb tests in the 1950s and 1960s. A detailed outline of this

experiment appears in [RTBW94]. Since natural sources and sinks of i4C are negligible, simulation

of the excess 14C after the bomb tests and comparison with observational data provides a reliable

test of the TRANS model's ability to transport material correctly. For this validation, input data

is taken from Johr, ston [Job89] for October 1963. This input data is shown in conjunction with

latitudinally averaged profiles of observations and TRANS model calculations in Figure 5 for April
1964 and October 1965.

3.2 Model Performance Compared to Sequential Codes

For normative comparison, the performance of the C version of TRANS21 is compared with the
Fortran version of STRAT for a three day run in Table 1. Measurements are shown for a Silicon

10

Machine version time
seconds

RS6000 STRAT 518
SGI STRAT 662
SGI TRANS21 535

KSR1 TRANS21 1511
KSR2 TRANS21 780

Table1: Sequentialexecutiontimesof modelversionson differentmachines,for 37 levelsand3
dayssimulationtime.

GraphicsINDIGO2machine,anIBM RS/6000workstation,andindividualprocessorsof theKSR1
and KSR2multiprocessorsemployedin our research.Theseresultsdemonstratethat the perfor-
manceof the TRANSmodel'simplementationwith Cthreads exceeds the performance of STRAT

on the SGI machines (probably due to higher efficiency in the C code implementation), whereas

TRANS performance on the KSR machine's comparatively slower processors is less than that of
the STRAT model on either the SGI or RS6000 machines.

3.3 Performance of the Parallel TRANS Model

3.3.1 Issues in Model Parallellzation

The experimental evaluations presented in this section address several specific issues concerning
parallel atmospheric modeling:

Do spectral solution methods for transport models result in computational overheads making

them ill-suited for parallelization? More specifically, what are the performance effects of data

movement during spectral model computations on modern multiprocessor machines?

Can parallelism attained by layer, term, and # parailelization be scaled to large parallel

machines? This typically requires the attainment of sufficient locality of access to model code
and data.

What are the I/O demands of atmospheric model computations based on spectral solution

methods, when acquiring input data on-line from file-based satellite data, when producing and

displaying output data during model computation, while also using the restart files commonly
used in large-scale scientific codes?

3.3.2 Experimental Results

All measurements shown in this section are attained by running the TRANS21 or TRANS42 pro-
grams for two simulation days. As described in Section 2.2, this corresponds to 2496 transformations

from spectral to grid or grid to spectral representations for each layer. The simulations are per-

formed with a varying number of layers in order to adjust the model's parallelism to the size of the
underlying KSR machine.

Measurements are performed on the KSR2 supercomputer, which is a shared memory, cache-only
(COMA) architecture with an interconnection network that consists of hierarchically interconnected

rings, each of which can support up to 32 nodes or 34 rings (the largest machine delivered to date

consists of 256 processors). Each node consists of a 64-bit processor, 32 MBytes of main memory

used as a local cache, a higher performance 0.5 MBytes sub-cache, and a ring interface. CPU

11

2O

--I

0
0

Figure 6: Measured speedup (dashed line with diamonds) for layer parallelization of TRANS21 on

the KSR2, using 30 layers, versus idea speedup (solid line).

clock speed is 40 MHz, with peak performance of 80 MFlops per node, an access time to the

subcache of 2 processor cycles (with a 64-byte cache line), an access time of 18 processor cycles

to local memory, and an access time of 126 cycles to remote memory using a 128-byte cache line.

Therefore, severe penalties exist concerning accesses to sub-cache, cache, and remote memory•

Such penalties increase when additional rings exist in the memory access hierarchy. At the lowest

level, the parallel programming model offered by the KSR's OSF Unix operating system is one

of kernel-level threads (Pthreads) which offer constructs for thread fork, thread synchronization,

shared memory between threads, and others. As stated earlier, TRANS is implemented with the

Cthreads parallel programming library, which is layered on KSR Unix Pthreads.

Layer Parallelization. The first results presented in Figure 6 verify that layer parallelization

of the transport code results in excellent speedup for a moderate number of processors. Measured

speedup for both TRANS21 and TRANS42 for computations involving 30 layers appear in Figure

6. The same experiments run on different parallel machines, a GP1000 BBN Butterfly and an SGI

Challenge multiprocessor, exhibit similar performance behaviors. For brevity, such results are not
shown here.

As stated earlier, these measurements simply verify that data exchanges in the transport schemes

of spectral transport models occur mainly horizontally, not vertically. This is to some exten_ also

true for grid based models, therefore the amounts of data exchanged vertically depend on the

specific physical or chemical processes being modeled rather than the transport method being

used. Examples of such processes exhibiting excessive vertical data exchanges include radiation

modeling, cloud modeling, etc. (e.g. [DFW+93]) Furthermore, computational loads are balanced

12

equallyacrosslayers,resulting in near linear speedup.

As described in Section 2.2 and as commonly done in climate models, the scientific version of

TRANS will use a total of 37 atmospheric layers. This moderate number of layers would limit the

scalability of a layer-parallelized code to small-scale parallel machines. This implies that additional

parallelization is required to enable the TRANS code to take advantage of modern, large-scale

parallel machines.

Term Parallelisation. The second parallelization strategy employed in TRANS is the indepen-

dent and concurrent computation of the different terms occurring in Equation 7. Several issues

arise, including:

• dynamic vs. static creation and allocation of threads performing term calculation, resulting

in implications concerning the locality of the grid data being accessed in term computations,

• performance limitations due to overheads arising from concurrent term computation, such as

additional thread synchronization and additional interprocessor communications, and

• potential load imbalances caused by differences in term execution times.

Measured speedup results for the term parallelization versions of TRANS21 on the KSR1 and

KSR2, and for TRANS42 on the KSR2 are depicted in Figure 7 for a model run with 14 vertical

layers. It is apparent from these results that initial near-linear speedup (up to 14 processors) due

to layer parallelism degrades to less than linear speedup due to unequal loads resulting from the

concurrent computation of different terms. Specifically, computational efficiency drops to about

0.6 when 56 processors execute a 14 layer model, with the 4 terms A..D in Equation 7 being

calculated in parallel. Reductions in parallel efficiency are due to three reasons. First, some

additional communications result from the necessary exchange of spectral data between parallel

term computations (grid data need not be exchanged since it is decomposed across term processors

and allocated locally). Secondly, and more importantly, load imbalances result from differences

in the execution times of terms. Thirdly, some additional overhead results from the necessary

synchronization required before and after terms are computed.

The measurements depicted in Figure 8 demonstrate the primary contribution of load imbalance

to the reduction in parallel efficiency. In these measurements, monitoring support available in

Cthreads (see [GEK+94]) is used to measure term execution times for a three-layer run of the

STRAT42 model. These measurements assume locally resident grid data. Load imbalance and

reductions in parallel efficiency are further aggravated when such locality of grid data is not assured

(see Section 3.4).

Parallelisation. Measured program speedup with the independent and concurrent calculation

of latitude bands inside the different terms is depicted in Figure 9. The simulations measured here

use three vertical layers with a varying number of processors. In these simulations, each term has

assigned to it the same number of 'help processors'. Changes in this assignment can be used to

further tune program performance. The number of latitudes calculated by each help processor (N _)

is approximately given by:
n_

N _' _ ,_-----_ (1)
,-r-'

3

where n _' = the total number of #'s divided by two, np is the number of processors used and n I is

the number of layers simulated. This means, for example, that the model computation measured in

13

¢-_

(D
{I)
Q.

6O

4O

2O

I I '

0
0 60

t /A

1 °° ._"

s_ o" ._" _ _

20 40

of processors

Figure 7: Measured speedup (14 layers) for term parallelization of TRANS21 on the KSR1 (aster-

isks) and the KSR2 (diamonds) and of TRANS42 on the KSR2 (triangles).

14

_l:ht bt bldd:ld:bt htld:htbt

_itlng mutex

waltin9 condition

wattln9 to Join

be joined

Figure 8: Monitoring of term parallelization of STRAT42 for 3 layers.

Figure 9 for TRANS21 (32 latitudes) uses 58 processors to calculate between 3 and 4 latitudes per

help processor, whereas in TRANS42 (64 latitudes) with the same amount of processors, between

6 and 7 latitudes are calculated by each such processor.

With # parallelization, two additional performance issues must be considered:

• load imbalances- caused by different numbers of latitudes computed by help processors, or

caused by differences in term execution times; the latter can be corrected in principle by
assigning different numbers of helper threads to each term calculation; and

• granularity - excessively small amounts of work performed by help processors, where compu-

tational overheads due to help processor use outweigh the benefits attained from additional
parallelism.

The performance of model runs with # parallelization is depicted in Figure 9. From these

measurements, it appears that the best granularity of computation for helper processes is the

calculation of approximately 3 latitudes per helper; no further performance galas ale attained

when computing a smaller number of latitudes per helper processor. This conclusion is not valid.

Instead, Section 3.4 3hows that speedup is primarily impeded by load imbalances.

3.4 Evaluation of Overheads due to Load Imbalance and Communication

Previous measurements shown in this section may be interpreted as limitations in parallelism due to

the data exchanges or communication required in parallel spectral transport models. The purpose

of this section is to investigate the various causes of and solutions to performance impediments.

15

.-- . _1[

¢_

q}

6O

4O

2O

0
0 6O

T I ' ' 1

J _ I-" "_" A" _" _ _ _ _ _ _'"

i i i I I I i I I I I

20 40
of processors

Figure 9: Measured speedup for _ parallelization versions of TRANS21 on the KSR1 (asterisks),

TRANS21 on the KSR2 (diamonds) and TRANS42 on the KSR2 (trian$1es), with simulations

performed for 2 days and 3 layers. Speedup results for a dynamic helper version of STRAT21 are

also shown (squares).

16

¢-_

2:}
0_
0_

o_

60

4O

2O

01

0

I !

. °

I , _ , I _ , ,

20 40
of processors

6O

Figure 10: Measured speedup for actual TRANS42 on the KSR2 (diamonds) compared to a syn-
thetic version of TRANS42 (asterisks) for 14 layers.

Load imbalance. As shown in Figure 8, the somewhat sharp drop in computational efficiency

when using term parallelization is due to load imbalances arising from differences in term execution

times. To further understand this phenomenon, we have created an artificially load-balanced (or

synthetic) version of the TRANS model (ie., term computations are artificially increased in length

when needed). The resulting speedup for 14 layers is shown in Figure 10, resulting in improvements
in efficiency from about 0.61 to more than 0.8.

These measurements also explain the results depicted in Figure 9, where # parallelization ex-

hibits limited speedup apparently due to the granularities of helper thread computations. Actual

speedup impediments are again due to the load imbalance in term parallelization, which results in

similar load imbalances for # parallelization, since each helper processor computes different numbers
of latitudes.

Load balance can be improved in several ways, including:

. The addition of chemical source and sink calculations to threads computing terms such that

total thread computation times are similar. This will lead to performance results like those
shown in Figure 10.

2. The concurrent calculation of the transport for several species, again performed by helper

processors such that loads are balanced during term computation.

3. The assignment of different numbers of helper processors to threads performing term compu-
tations.

17

Concerning1,manyof the species transported in the atmosphere and being investigated by sci-

entists are also undergoing chemical changes. The computations required to model such changes can

be distributed across helper processors (or even helper threads) and therefore, improve imbalanced

loads. In addition, these chemical changes are highly non-linear in nature and therefore, have to

be calculated in the grid domain. This implies that their computation by helper processors (rather

than by additional processors) is important since such processors already have locally available

the required grid information, thereby avoiding additional inter-processor exchanges of grid data.

However, the assignment of chemical computations to helper processors to correct load imbalances

has to be performed for each model run, depending on the actual chemistry being performed, the

number of simulated species, etc. It is important, therefore, to construct TRANS such that the

number of helper threads, the computations performed by them, and the assignment of threads to

processors is easily varied.

Communication overheads. We have constructed a version of TRANS that is able to allow

any number of helper threads and processors to first acquire and then execute any number of

term or chemistry computations, called TRANS-D (D for dynamic helpers). In this version, some

limited number of helper threads is created at the time of program initialization, but no work is

assigned to helpers at that time. Instead, each helper retrieves a work description from a global

'work queue' into which previous computations deposit work items (e.g., a term computation).

One interesting insight from the use of TRANS-D is that the use of dynamic helpers can severely

degrade program performance unless work items are assigned to helpers such that the locality of

the grid data required for such work is maintained. This is shown in Figure 9, where the dynamic

helper version results in poor performance due to grid data movement caused helper execution

on any available processor (rather than on the processor possessing the appropriate grid data).

Formulations of the suitable restrictions of mappings of threads to processors have been widely

explored in the literature (e.g., see early work described in [SJ84]), but they have not been added
to TRANS-D.

The exchange of spectral information among different helper threads does not affect program

performance, as readily seen from the improvements in speedup attained when balancing helper

loads (see Figure 10) while also exchanging spectral data among helpers. To quantify the effects of

spectral data exchange among helper processors, term parallelization version of TRANS has been

run such that spectral information exchanges are suppressed, which produces incorrect simulation

results. Timings of such incorrect simulations exhibit only minor differences to timings of stan-

dard TRANS, thereby indicating that spectral data exchange is not a limiting factor in program

performance.

3.5 Input analysis

Atmospheric models can produce and consume large amounts of data. Therefore, application

performance can be severely affected by input/output performance. As mentioned in Section 2.2,

the TRANS model requires the input of windfield information (two real numbers for every spectral

point in the model) for every simulation day (e.g., every 12 time steps) for each layer. For high

input performance, we distribute such windfield information across multiple files (one per level)

prior to each model run, where a variable number of input threads can read such files prior during

model execution, and where model computations are programmed to proceed whenever input is

available. In addition, 2 days of windfield information are input prior to model computation, so

that model computation can proceed concurrently with additional windfield inputs. Model output

is also performed concurrently, using the concurrently executing layer processors. In Table 2, total

18

Machine numof procs I/O time speedup total run time percentageof total
seconds seconds

SGI 1 0.64 1 98.3 0.65
KSR2 1 5.12 1 140.4 3.65
KSR2 2 2.58 1.98 140.4 1.84
KSR2 5 1.12 4.57 140.4 0.64
KSR2 10 2.40 2.13 140.4 1.71

Table2: Executiontimesof inputs for TRANS21for 2 simulationsdaysand 10 layers,usinga
simulationrun on a singleprocessor.Thelast columnshowsthe relationshipbetweeninput time
and total simulationtimeasa percentageof total executiontime.

input timeisevaluatedfor a variablenumberof input threadsfor aTRANS21run for 10layersand
2 daysof simulationtime. Fromthis table,it is apparentthat the KSR2offerslimited parallelism
for I/O. Specifically,our machinehas7 input/output adapters,so that input time improvesfor
up to 5 threads,then degradesfor 10 threadsconcurrentlyreadinginput files. Similar levelsof
concurrencycanbeattainedfor dataoutput.

3.6 Discussion

The performance results presented in this section demonstrate several properties of the parallelized

spectral transport code relevant to high performance computing:

Significant performance gains are attained even when parallelizing only the transport com-

ponent of a global atmospheric modeling code. Such performance gains can be expected to

extend to large parallel machines offering hundreds of processors, and they should increase

for more complex atmospheric computations that include chemical modeling, etc.

Parallelization across different atmospheric layers is advantageous for transport processing,

but limits parallelism due to most models' use of a moderate number of layers (e.g., 37 layers).

This necessitates a parallelization approach relying on multiple methods for program and data

decomposition, such as term and # parallelization. Models that require extensive computation

integrating over vertical atmospheric columns[WF94] may prefer # to layer parallelization,

but they still remain subject to the other performance issues studied in this paper, including

load balancing, the minimization of grid data exchange, etc. The use of addi'Aonal methods of

parallelization (e.g., FFT parallelization) are likely to further increase the degree of parallelism

available in global atmospheric models. Sample additional parallel activities pursued by

our group include the introduction of additional terms during term parallelization, or the

experimentation with alternative advection schemes (e.g., the semi-lagrangian transport of

water can be paralJelized, independently of spectral transport, in the grid domain.

The global sharing of spectral data results in few additional runtime overheads while the

sharing of grid data results in significant performance penalties on any parallel machine

subject to restrictions in communication latencies and bandwiths.

Load imbalances result in large performance penalties for larger number of processors. Such

imba_ane_ may be rery..oved by pursui_ of mixcd parallelization strategies (e.g., telm w_'_

parallelization) and/or by additional consideration of specific properties (e.g., chemical

properties) of atmospheric constituents.

19

.... _J

The performance results presented in this section are gained by experimentation with a Kendall

Square KSR2 supercomputer. While this machine offers a shared memory model, the performance

insights attained with it also extend to non-shared memory machines like the Intel Paragon or

the Cray T3D, because the penalties for remote vs. local memory access on the KSR machine

approximate those of distributed memory platforms (ie., penalties of up to 1:100 for local cache vs.

remote memory accesses). Furthermore, the threads platform used in our experimentation is easily

ported to other shared memory parallel machines (e.g., Cthreads are already running on the SGI

multiprocessor machines).

3.7 Related Research

Research related to our efforts falls into two categories:

* the parallelization of weather forecast models, as performed prior to our work by research

groups at the European Center for Medium-Range Weather Forecast, using spectral weather

models [DS89], and

• the parallelization of climate models, as performed concurrently with our work at Oakridge

National Laboratories in the U.S., using NCAR's CCM2 model [HBB+92].

Both of these research groups employ distributed rather than shared memory machines in their

research. However, differences in their results to the work presented in this paper are due primarily

to differences in parallelization approaches. Specifically, both of these research groups parallelize

the "shallow water model" equation for one plane, requiring the solution of three equations for

three unknowns, whereas the amount of computation being parallelized in our work is less: we are

parallelizing only one equation with one unknown. This implies that the resulting ratio of local

computation to communication in the models parallelized elsewhere is more advantageous than in

the TRANS model. Therefore, the detailed study of spectral transport parallelization with the

TRANS model can be considered a necessary prerequisite or element of any parallelization effort

involving large-scale atmospheric codes.

Specific comments on each paper describing related work are presented next. In the Euro-

pean models, Barros et al. [BKg0] investigate spectral and grid based parallelized solutions to

Helmholtz-type equations on an iPSC/2 hypercube with 32 nodes. /, paraUelization of the Laplace

transformation is employed (as in our work), comparing two types of data exchanges between pro-

cessors: (1) the rotation approach, where data is communicated stepwise between processors, with

each processor removing from a message the information it requires and adding to the message

the information required by its neighbors, vs. (2) the transposition approach, where all data is

exchanged in chunks among the processors requiring it. Both communication approaches result in

parallel efficieucies exceeding 90%, with the transposition approach being slightly more efficient.

The disadvantage of this approach is that parallelization is limited to a total of J/2 processors,

where J =number of latitudes. Detailed studies of alternative communication approaches are not

part of our work with the TRANS model, but may constitute an interesting extension of our

research even on shared memory machines like the KSR due to the machine's NUMA properties.

Further parallelizations by this research group concern a large-scale nCube/2, where they attain

an efficiency of 86% on 86 processors using the 2-D ECMF weather forecast model [G5S93], and
efficiencies of about 85% on 8 processors on an IBM SP1 machine with the 3-D ECMF weather

forecast m_del [GJS94].

In the U.S., Jacob et al. [JH89] solve the shallow water model in a plane on a 20-processor Encore

Multimax shared memory machine, comparing finite difference vs. spectral transport solution

2O

methods.Mixedparallelizationmethodsareused,wherethethreedifferentequationsof theshallow
watermodelarecomputedconcurrently,whilealsousing# parallelizationwhensolvingeachof the
threeunknowns.Efficienciesof up to 96%areachievedfor 20processors.

Concurrent with our work, Worley et al. at Oakridge[WD92] solve the shallow water model in

one plane on a Intel iPSC/860 with 128 nodes, using # parallelization for the Laplace transformation

and the aforementioned rotational data exchange. Efficiencies of .31 and .35 are attained for T21

on 16 processors and for T42 on 32 processors. Initial results are limited to using up to a maximum

of 32 processors for the T42 model. These restrictions are removed in [WWD92], where additional

parallelism is attained by parallelizing the FFT computations performed across the data in vertical

atmospheric patches. This mixed parallelization approach results in a composite efficiency of about

0.1 for T21 on 64 processors and of about 0.15 for T42 on 128 processors. Load imbalances appear

the primary causes of reduced efficiencies on large-scale machines. Additional measurements appear

in [WF94], where results are attained and compared on a 1024 processor NCube/2 machine, a 128

processor iPSC/860, a 512 processor Paragon, and a 512 processor Connection Machine. Specific

optimizations address each of the machines being used.

In [FW94], Oakridge investigators compare several possible parallelization of the spectral method

for solving the Shallow Water Equation, including (1) parallelization of the Laplace transformation

using the (a) transpose technique versus the (b) rotation technique, (2) parallelization of the FFT

using the (a) transpose versus (b) rotation techniques. This parallelization uses a model exhibiting

several atmospheric layers but does not parallelize across layers. In [DFW+93],the same methods

are used for parallelization of NCAR's CCM2 model on an Intel iPSC/860 with 128 processors.
An additional transport scheme has to be employed for computing the advection of moisture fields

(the spectral approach does not appear to work well for this purpose). Instead, CCM2 uses a semi-

Lagrangian transport scheme, which results in the use of two transport schemes in the model being

parallelized. The authors again use # parallelization, assigning overlapping regions to processors.
Such an assignment scheme could be explored with the TRANS model as well.

Acknowledgements

The research for this work was supported in part by funds from the following organisations and
projects: UARS Grant G35XO5UARS NASA Grant from the National Science Foundation under

Grant ATM-8905901 In addition we would like to thank Greg Eisenhauer and Weiming Gu.

References

[ABB+94] J.J. Ambrosiano, J. Bolstad, A.J. Bourgeois, J.C. Brown, and B. Chan. High-

performance climate modeling using a domain and task decomposition message-passing
approach, pages 397-405. IEEE, August 1994.

[BK90] S. R. M. Barros and T. Kauranne. Spectral and multigrid spherical helmholtz equation

solvers on distributed memory parallel computers. In Fourth Workshop on use of paral-

lel pocessors in meteorology, pages 1-27. European Centre for Mefium-Range Weather
Forecasts, November 1990.

[CAP80] Derek M. Cunnold, Fred Alyea, and R. Prinn. Preliminary calculations concerning the

maintenance of the zonal mean ozone distribution in the northern hemisphere. Pure
Appl. Geophys., 118:329-354, 1980.

[CAPP75] Derek M. Cunnold, Fred Alyea, N. Philips, and R. Prinn. A three-dimensional

dynamical-chemical model of atmospheric ozone. J. Atmos. Sci., 32:170-194, 1975.

21

[CMS93]

[DFW+93]

[DS89]

[EGSM94]

[Eis94]

[ES94]

[FW94]

[GEK+94]

[GJS93]

[GJS94]

[GMS94]

[GMSS94]

Christian Clemencon, Bodhisattwa Mukherjee, and Karsten Schwan. Distributed shared

abstractions (dsa) on large-scale multiprocessors. In Proc. of the Fourth USENIX Sym-

posium on Experiences with Distributed and Multiprocessor Systems, pages 227-246.

USENIX, September 1993. Also as TR# GIT-CC-93/37.

J. B. Drake, R.E. Flanery, D.W. Walker, I.T. Foster P.H. Worley, J.G. Michalakes,

R.L. Stevens, J.J. Hack, and D.L. Williamson. The message passing version of the

parallel community climate model. In G-R. Hoffman and T. Kauranne, editors, Parallel

Supercomputing in Atmospheric Science, pages 500-513. World Scientific, 1993.

D. Dent and A. Simmons. The ecmwf multi tasking weather prediction model. Computer
Physics Reports, 11:153-194, 1989.

Greg Eisenhauer, Weiming Gu, Karsten Schwan, and Niru Mallavarupu. Falcon -

toward interactive parallel programs: The on-line steering of a molecular dynamics

application. Technical Report GIT-CC-94-08, Georgia Institute of Technology, College
of Computing, Atlanta, GA 30332-0280, 1994. also in High-Performance Distributed

Computing (HPDC-3).

Greg Eisenhauer. Portable self-describing binary data streams. Technical Report GIT-

CC-94-45, College of Computing,Georgia Institute of Technology, Atlanta, GA 300332,

1994. (anon. ftp from f'tp.cc.gatech.edu).

Greg Eisenhauer and Karsten Schwan. Md - - a flexible framework for high-speed

parallel molecular dynamics. In Adrian Tentner, editor, High Performance Comput-

ing, Proceedings of the 1994 SCS Simulation Multiconference, pages 70-75. Society for

Computer Simulation, Society for Computer Simulation, April 1994.

I.T. Foster and P.H. Worley. Parallel algorithms for the spectral transform method.

Technical Report ORNL/TM-12507, Oak Ridge National Laboratory, April 1994.

Weiming Gu, Greg Eisenhauer, Eileen Kraemer, Karsten Schwan, John Stasko, Jef-

frey Vetter, and Nirupama Mallavarupu. Falcon: On-line monitoring and steering of

large-scale parallel programs. Technical Report GIT-CC-94-21, Georgia Institute of

Technology, College of Computing, Atlanta, GA 30332-0280, April 1994. Submitted to
Frontiers 95.

U. Gaertel, W. Joppich, and A. Schueller. Parallelizing the ecmwf's weather forecast

program: the d case. Parallel Computing 19, 19:1427-1429, 1993.

U. Gaertel, W. Joppich, and A. Schueller. Medium-range weather forecast on parallel
systems, pages 388-391. IEEE, August 1994.

Kaushik Ghosh, Bodhisattwa Mukherjee, and Karsten Schwan. Experimentation with

configurable, lightweight threads on a ksr multiprocessor. In In the Proceedings of the

First International Workshop on Parallel Processing, Bangalore, India, December 1994.

Expanded version available as Georgia Tech TR# GIT-CC-93/37.

Ahmed Gheith, Bodbi Mukherjee, Dilma Silva, and Karsten Schwan. Ktk: Kervel

support for configurable objects and invocations. In Second International Workshop on
Configurable Distributed Systems, pages 236-240. IEEE, ACM, March 1994.

22

[GVS94]

[Hau40]

[HBB+92]

[JE45]

[JH89]

[JobS9]

[KHYK61]

[Lor71]

[Muk91]

[Pla60]

[Pra92]

[RTBW94]

[SFG+91]

[Si154]

[SJ84]

[SO93]

Weiming Gu, Jeffrey Vetter, and Karsten Schwan. An annotated bibliography of inter-

active program steering. ACM SIGPLAN Notices, 29(9):140-148, Sept. 1994.

B. Haurwitz. The motion of atmospheric disturbances on the spherical earth. Journal

o� Mar. Res., 3:254-267, 1940.

J.J. Hack, B.A. Boville, B.P. Briegleb, J.T. Kiehl, P.J. Rasch, and D.L. Williamson.

Description of the ncar community climate model (ccm2). NCAR Tech. Note TN-

382+STR, National Center for Atmospheric Research, 1992.

E. Jahnke and F. Emde. Tables of functions. Dover Publications Inc., 1945.

R. Jakob and J. Hack. Parallel mimd programming for global models of atmospheric

flow. ACM, pages 106-112, 1989.

H.S. Johnston. Evaluation of excess carbon 14 and strontium 90 data for suitability to

test two-dimensional stratospheric models. J. Geophys. Res., 94:18485-18493, 1989.

S. Kubota, M. Hirose, Y.Kichuchi, and Y. Kurihara. Barotropic forecasting with the

use of surface spherical harmonic representation. Pap. Meteorol. Geophys., 12:199-215,
1961.

E.N. Lorenz. An n-cycle time-differencing scheme for stepwise numerical integration.

Monthly Weather review, 99(8):644-648, 1971.

Bodhisattwa Mukherjee. A portable and reconfigurable threads package. In Proceedings

of Sun User Group Technical Conference, pages 101-112, June 1991.

G.W. Platzmann. The spectral form of the vorticity equation. J. Meteorol., 17:635-644,

1960.

M. Prather. Special numerical experiment: Simulation of cfcl3 as a test for 3-d at-

mospheric models. Technical report, Report for WCRP Workshop on Long-Range

transport of trace gases, 1992.

P.J. Rasch, X. Tie, B.A. Boville, and D.L. Williamson. A three-dimensional transport

model for the middle atmosphere. J. Geophys. Res., 99:999-1017, 1994.

Karsten Schwan, Harold Forbes, Ahmed Gheith, Bodhisattwa Mukherjee, and Yian-

his Samiotakis. A cthread library for multiprocessors. Technical report, College of

Computing, Georgia Institute of Technology, Atlanta, GA 30332, GIT-ICS-91/02, Jan.
1991.

I.S. Silberman. Planetary waves in the atmosphere. J. Meteorol., 11:27-34, 1954.

Karsten Schwan and Anita K. Jones. Specifying resource allocation for the cm* multi-

processor. IEEE So, ware, 3(3):60-70, May 1984.

R. Swinbank and A. O'Neill. A stratosphere - troposphere data assimilation system. Cli-

mate Research Technical Note CRTN 35, Hadley Centre Meteorological Office, London

Road Bracknell Berkshire RG12 2SY, March 1993.

23

[WAB+93]

[WD92]

[WF94]

[WP86]

[WWD92]

M.F. Wehner,J.J.Ambrosiano,J.C.Brown,W.P.Dannevik,P.G.Eltgroth,A.A. Mirin,
J.D. Farrara,C.C. Ma, C.R. Mechoso,and J.A. Spahr. Towarda high performance
distributedmemoryclimatemodel. IEEE, pages 102 - 113, 1993.

P.H. Worley and J.B. Drake. Parallelizing the spectral transform method. Concurrency:

Practice and Experience, 4(4):269-291, 1992.

P.H. Worley and I.T. Foster. Parallel spectral transform shallow water model: A

runtime-tunable parallel benchmark code. In SHPCC '94, pages 207-214. IEEE Com-

puter Society, 1994.

W.M. Washington and C.L. Parkinson. An introduction to three-dimensional climate

modeling. Oxford University Press, 1986.

D.W. Walker, P.H. Worley, and J. B. Drake. Parallelizing the spectral transform method

- part ii. Concurrency: Practice and Experience, 4(7):509-531, October 1992.

A Mathematical Model Description

We first describe the governing equation for the global transport of any atmospheric constituent.

Next, a short overview is presented of the spectral approach to solving this second order differential

equation.

Equations for Global Transport.

with mixing ratio X 2 is given as:

The continuity equation for any atmospheric constituent Y

OX
- g. VX

Ot

where ff is the wind velocity which can be written as:

(2)

= (a, w) (3)

where ff is the horizontal part of the windfield and W is the vertical a_tvection velocity.

By expanding the horizontal wind velocity g in terms of a horizontal stream function _b and a

velocity potential X (/_ is the vertical unit vector and the V is taken on a constant pressure surface):

= fix v¢ - vx (4)

it cazt be shown, that the continuity equation for the transported species Y can be expressed as:

OX OX
(g x v_). vx + v_. vx - w_-_, (5)

Ot u_

where W is the vertical _lvection velocity, Z = -In(P), and P is the ratio of pressure to 1000
mbar.

2Concentrations of atmospheric trace gases are usually expressed as a ratio between the number of molecules of

species Y and the number of air molecules in a given volume. This is called the mixing ratio of soecies Y and it

usually given in parts per million (ppm), parts per billion (ppb), or parts per trillion (ppt).

24

To takeinto accountthediffusivecharacterof thetransportof anyspeciesin the atmospherea
verticaland horizontaldiffusionterm hasto beadded:

_ OX 0 (KaP OX
OXat (/_ × v¢). vx + vx . vx - w-_ + _-_, _o -ffz) + AHV2X (6)

where AH and Kz are horizontal and vertical diffusion coefficients and H0 is the scale height

(_ 8kin).
By using spherical coordinates (), = longitude, # = sin(C), 4) = latitude, Z = - In(P)) and by

making the equation dimensionless, the final prognostic equation for species Y can be written as:

A

Ox "Ox O_ O_ Ox

O--T= OA O# OA O# +
B

OX OX"
1 Ox OX + (1 - #2) O# Ou(1-#2) 0A OA

c D

wO_-X " 1 0 K OX ^ 1 02X 0 20X,"
- +'H0_-'pp_-_(.P-_) + AH((I_#2---------_ 0_2 +0--p## _'_)

(7)

For further referencing the different terms have been named A ... D

A more detailed description of the spectral method used in our model to carry out this integration

appears in the next section.

The Spectral Approach to Solving the Transport Equation. We will not discuss the

spectral method in depth, but instead provide a brief overview. More detailed information can be

found in several publications, including[Hau40, Si154, Pla60, KHYK61, WP86, FW94].

Any variable F(A, #, t) in a 2 dimensional spherical surface can be approximated by an expansion

into a set of orthogonal spherical basis functions, called spherical harmonics:

lMax nMax(l)

(8)
I=-lMax n=ll [

The complex quantities]l,.(t) are called expansion coefficients. The orthogonal spherical harmon-

ics _,.()_, p) are given as[JE45]:

_,.(2, p) = eiiX/],.(p) (9)

where Pt,.(#) are tbe normalized Legendre's associated function of the first kind. By setting

nMax(1) = lMax a triangular spectral truncation is used. For applying a unaliases transform

)_Max (number of longitudes) has to satisfy:

,_Max >_ 3nMaz (10)

To simplify the Fast Fourier Algorithm invoived in the transformations usually A Ma" is chosen to

be the smallest power of two satisfying this equation. In addition the number of latitudes is usually

set be half the number of longitudes. Therefore nMax can be used to characterize the horizontal

25

resolutionof a model,eg. T42 meansa triangulartruncationwith nMax = 42, AMax -= 128 and

the number of latitudes is 64. One of the necessary characteristics of spherical harmonics to be

useful as a basis for an expansion is their orthogonality:

/;/:" {l_,n(A,#)yt: ,(A,#)dAd# = 41r ifn=n' and 1=1' (11)
t 0 otherwise

where Yv*.,¢(A, #) represents the complex conjugate of l_,,_ (A, #). By adding a weight function w (#),
this orthogonality holds also if instead of the two integrals only finite sums over # and

lambda are executed. Using this orthogonality the expansion coefficients fl,,,(t) is easily calculated

(if F(A, #, t) is known)

F(,X,#, t)Y_:,,,(,X,#) =

_ /_,.(t)ri,.(_,.)w(_) Y,,'.,(_,_)_(_)=
I._,A \l=-IMax n=[I I

ft',n' (t) for each l' and n' (12)

The spectral method of solving the transport equation takes advantage of the fact that terms
like OF and OF"b-fi _-_ are much easier and more accurately calculated in the spectral domain (compared
with a grid based finite difference scheme):

(13)

where

-_ = \l----tMa_ n--Itl

are known functions od Ft (time independent).

(14)

26

i: _i:::_i ; _i_i_ii,_ ;

_i_iiii_i_iiii,!i!:iiiii!i!!i!i

iii!iiii!_ii!iLii_iliiiiiiiii!
iiii_i !:!!i:ii:i_iiiiiii!iiiiii:

ii ili!i i: :!iL!iiii_i_!i!i_!ilili

i!_!_i_i_ii_iiiii_iiiiiiiii!iii_i

)< U _* I

I Q

U U 0

_4.: Q
:_i! "__ _i _

c; _-- _:: z
Z Z _:: 0

U,I :

I-. X U i:iiii)i _"
Z h- '_1: : :_

0 _[I-,_: i : o-_

U W 1_1: ::;: _K
1"_ +: ::: CI_ : _:. U4

•: ;:-: :: : :::: :;:

O : _

_i (.3

>" Z ZII 0

0

0

T ,,,

I-- ::i:: t_::: _

U.

I--

I.- :2:: : :::: ::

7 Y- :22:.i::
_ :.:::: :

<

w

!!!i:ii_iilii!!! iiii!ii:i:_iF_i!

!,i iii!iiiii iii iii+i i!iiii!!il
i_i_iiiiiiiiiiiiii!ii_i)ii)ii)ii!_

ii!!,_:i'i_!_!!'iiili!:iiiiil

_i!:iiii:_ii_i_!i!/_!_i?i_i_i.....

!_iiii!iii!ii_iiii!i!i!iiiiiiiiil

iiiiiiiiii_i_!i_iiiii!i_ii!iiiiiil
:+: :_+:+: : ,,:,: :+::

_!_i:ii_iiiiiiiii!iiiiiiiiiiiii:i
-i_i_i_ i i: ii:!:iii i:):!:

L'_l {_J _ r_

I- ; Ot_OW
Z O_

(=,I i

-I
:: ::: :: >:.:

! [?[!12211;:i)Si[i

: :..:.:.:+:+:

,+
<

::i _i?:):eil_
, :, : :::::.:::.

: -< ::::+:.:..

I.,.- :i!ii i i:!l_ _
Z : :::::::::::::::::::::::::::

i i_i_i!i!i!;i!_!i_::
:::ii:i:i:i:i:i::iFi:i_i!_:i_il.
............................

:::
':_i_)_)i)ii_,+ii)iil)i)ili)i!;',i)i)
::::::::::::::::::::::::::::::::::

_!ii!iiiEi_iii_i_!ii_iiiiiiiEi!EEi
:i::!:_:_:!:!:i:!:i:i:E:i:i:i:i:i

::
:::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::-

?:_:i!ii)i)iiii))ii:i:i!i_iii!!ili!))ii!

u_

+-+ ;i,_ Z;_

> _ U.1:3:m
_ I_:(._: _

I_ :Li!:i21: : 5 [2D_)
_.1 :::::::::::::::::::::::::

_. [22_L2!5: i ::5 [i _12

i)++!ii_ii_i!ii_i_i_i!ili!ii!)i!)!

!iiii_:iil)!iiiiiiii!_iiiiiii_!iill

i!_i!_:i!ii_ii!ii!ii-i:i_ i+i_

iiiiiiiii'ii,ii'i_iiii_ili!i_iiiii_
!iiiii_i!_iii_)i_!_i!_i'i_!ii
iii_ii_ii_ii+_i,i!_i_i!i_i_i

_'!)_ii!iiiii!+iii,i_iiiiiiiiiiiiii
::+:: _!i_. _i.i.:_i.i:::i.

:. ;, w: .:

::L:: : :::: :

+: :::.

il)i:i!i!!iiii!!+!i:_i!iiiii:iii

ii:iii_i_iiiiii:_i:i

ii.ii:iLIO:ii:ii_i[_i!i:i?2

: .: ::. . :::::: .::

i!)ii:i:ii_iiiiiiiiii:i:iiiii

:ii_iii_iiiiiiii:iiiiii!iiiiiiili

ii:i:i_ii)i)ii:i_iii:i:i_!_!_ililil
:::::::::::::::::::::::::::::
::::::::::::::::::::::::::::.:.:

il}iiil;!8!8!iiiiiii_
i)i!i!iiiiiii;_;iiii;_iiiii_iii_
!i!i_!:i_!iiii_ii:211?ii21[i:i_;i_

:::::::::::::::::::::::::::::::::::

+
iil)ii;i))iiiiiiiiii;)_iiiii)_i_il
:::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::

i)ii))i))i)))))))ii)iii!ii!i_ii!)!i

:::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::

ii;!iiii)i))iiiii_il)ii)!i)ii)il)ii

iliiiil;)iiiii;iliiiiii!i!iii!il;il_
::::::::::::::::::::::::::::: _1

::::::::l_J:: :

Z l_!:Wiii:il._.i
14,1 ::::::::::::::::::::::::::::::: (_

CD !F_iii!!ii:i!iiiii_Liiiiiiiii!:i! -.I

14_ ::::::::::::::::::::::::::::::::
ii_ii_i):ii_ii_iiiilFii_ilFiiiiiiii C_

Z 14,J

:::::::::::::::::::::::i:i!-i :
::::::::::::::::::::::::::::::::

i_ !i_ii_i)_il)iiiiii_!iii!:ii_iii!i!! •

-:i_::::: :?!i: :

_. ii!i_ili:ili!ii:i!iiiiii::ii!_ii_i

:i::!:i_!::i!i::!,i?:i:i_i!-!:_:! i_ii!iii!!ii!ii_iii_ii!ii!ii!!i!ii_

......."'": iiiiiiiiiiiiiii!iiiiiii!iiiiiiii!il
_i!iiiiiii!_iiiiiiii!iiiiiii_iiiiii i:iii!ilili_i_i!i!i_ili!i_i!i!i_ili. ::+:><+::+:+:

i_ 0 _:::::::0_
x o ,,-,
I : ,ITS:::: _ :::::::::::::::::::::::::

LO ,,-I L'_J
l 0 £"9

o u 0_: o

u. :o

oZ Z

Z I-- :::: ,,_
"I _ :: : :: 0_: ::: 0£ ::.:::: ::::: ::::::::::.

tO 0,. : : tt}:: O.

(.3 _ l,_l: i: X :_!i!i: : :0.II:I] i_
'_ ,'_ CI_: !i i : I,_I :::::::::::::::::::::::::

o ::..............
0 _ : ::::: ::2:

0 _ -::.::::- :,::: _,: •
O0 I-- : Id_ _L_:O_ Od
O_ : _::: Z

o- .

_

0 I.-- :::::::::::::::::::::::::

::: :..:::2::: ::::::,. : ::..:::.:::
: .: :.:::. _:. _::_::

:::::::i :!ii:i.il :

: ;: ,l_i:: O0 >" :: : ::: :-::-,_i:*:

:?: :: : :::::: _ :':::::::2::.:.:
: ::2 :::: :-:: f:: ::::

u.

:z: i;i!!i:!iiii_?_i
::: :: :: :

;::_;[:: ;:!:; Z :::::::::::::::::::::::::::

o :i:iii!_!:==:_i
i::! iii:_ii::i::iiiii::_ili
iii::iil;ii:;i;:;ii!::!:!i!::iii::iiiii

:i,._: :Z:i:2? :i:_:_:2:_:: .:-:.:.:,:.:.:.:,:.:-:.:.:.:.:.:-:...::::::::::::::::::::::::: i!iiiiiiiiiiiil;iiiiiii!iiiiiii!iil

::::::::::::::::::::::::::

Z

:31 I,,- i(.,_: i ! .l_!i!_!ii_i o _i_ii_i!iiiiiiiiiiiiiiiii!iii]ii[il

f,l) (_ :::::::::::::::::::::::::::::::::::
:3 i:_:_;_:_:]:i:i:i:i:i:i:i:i:i:i:i:i

:: :::::::::::::::::::::::
:::::::::::::::::::::::::::::::: :::_:i:_:i:!:_:i:i:i:!:i:i:i:i;i:i;

...................................:::e_, ::::::::::::::::::::::::::::::::

- ,, ::::?::::?:_:_:_:?: iii)::;;iiiii:i_ii_i•
_/1 0 :::::::::::::::::::::: _,l i ::_::_i:_:!Gl_i _I

UJ UJ _ i_ :l_i:_l_i _I: I

0 O_
..J I.hl
0 t"-
Z Z

I--

I.i.

0

uJ
I--

I--

I.--

Z

0
bl

:>.+ :<<+:<<+ :.: iliiiiiiiiii_iiiiiiiiiiiiii!iii_iii
::+:.:.:->x<+:.:.:.:+:

iii!iiiiiiiiii_iii!i_iiiiiiii!iiii
ii!iiiii_iiiiiii_i_iii_i!iii_i!!ii_
i!_i!iiiiiii_i!iiiiili!ii!!iiiiiiii
iiiii!i!i!ii_iiii_i!i!iii!i!ii_iii

iiiiii:i__!_ii:iiiiiiiiiiii

:iii:i_'(i!ii?!iiiii!i!i!i

iiii_:iii_ii_ii_iii!ii!i_iiii

iiiii;i:iii_!:_:!;!!!_i;!ii_!_iii;i
!!ii_!ii_iiiili!!i:!i!i!;ii
ii!iiiiiii_iii!i!i!ili:i!_iii
iiiiii_i_iiiiiiiiiiiiiiiiii

i:i:_iiii_-:i:i:_:i:i:_:?i:
!:!!i!ii:i_,iii:ii!i]i!:ii!_i

::!:i]ili_!_:!i!!!:!!il]i!:!

,÷ :..: .:, .:<÷:

:::::2:: :::.:::: :::::

iiii::i_iiiii_!!iiii!!ili:!:ii!!i
:::.:::::<::::2: :.: :'

:!i::i_iiiiiiiiiiii!ii!ii!:!i!!i!i

i:!ii_i_l!:i:?!:!

ii:i:[i'l_l:i!_'_:[i!i_iill
:::::::::::::::::::::::::::
i:iiii_:i_i!iiiii:i_

ii;iiiiii:g_i_iii!iiiii!
:i:ii!:i:_ii_:_i:ililil
::::::::::::::::::::::::::

iii:!iii!ii_i!ii;!!iil;ii:;i;iiii!i

;ii !!!ii!i!!i!iiiiiiiiiiiiii!iill
::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::

============================

ii_iiiii!_i_iiii!iii
:::::::::::::::::::::

iiiiilUiiiiiiiii!iii!iiiiii!iiiii
i:[:i:[:i:i:i:i:i:_:i:i?i:_:i:!:i
:::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::

?i.i.i.??i?::<:.:-:,::.:

ii!i;i!ii!iiiiiiiiiiiiiiiiiiiiiiiil

ii;iiiii!ii[iiiiiiiiiiiiiii:iii:i_

-J I-- _:?::i::i:![3_ii::i:i: W

"('(:_ > _ i_: i]i_i_ i]_i_ii_!!_i!_i]] _:::i]i]:ii:i::i[_ii::[_[i]i[]]i]i
0,. _]:] _i_:!: _ t,_ ::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::

(/I _ ::!: I'- _ ::::::::::::::::::::::::::::::::: ::::.';:::::::::::::::::::::::::::

_: :::o i:iii:iiiiii:iiiiiiiiiiiiiiiii
z _ ,_ ,,, ,._========================,¢,'-, '(0 ¢0_!:.!i!i!!ii_!!_!!i_i_i!t,,- ::,:,_:.<:.:,: : ::
C£ I-" _. J :i L_. Z ::i::iil;iiiiii;i_i_il]_ 0 ::::::::::::::::::::::::::::

O. 0'I "' "" : : :_:__:i!]ii!__!ii]i!_! _ i i:ili]![]]::_ii::ii_i :_i:._i::

ii!ii_iiii!iiii:ii_:ii!ii:i_

!i!!!ili!ii!i!ii!!i!!!iii!iiiiii!!
!:!:!::!:!:!!:!!!i!_:!:!I:;

iiii:i_;ii!i!iiiiiii!!:Ui:
;:;:: :::.;::::::::: ::.:..,.,.

2: ::2:.::::::::::

:.::..:" : :

::::::::::::::::::::::::::::

::::::::::::::::::::::::::::::::

::::::::::::::::::::::: :

i::_::'i'i:?i?:i i [:_ :i:
:::,:: : ::2:. :::::2:.:

:::::::::::::::,.2: :2:::-:
:::::::::::::::::::::::::::::
::::::::::::::::::::::::::2:<

2:: ::::::::::::::::::::::::::
::::2:::::::.::'::::::::::::::
: ::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::

::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::

iii!__i_ii]i::iii]_!i:.i_:/:i_::
:::::::::::::::::::::::::::::::::
i:_:!:_:?i:!Si:i:!::i:!:i:i:i:i

iliill; iiiiiiiiliiiii ii :iii iii
:::::::::::::::::::::::::::::::::::

:::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::

iii_i_!ii_i_i::iii_i::i_i;::i::E;
!_!i!iiiiiiiiiiiiiiii!iiii_ii_!_!i

!iiiiii_iiiiii]iii!i]iiiiiii!iiii!i

iiil)_iiiii::iiiii::i::iiiii::i::iiiii:::

iiiiiil;i!iiiiiiiiiiiii:.ii!!!iiii::ill
:::::::::::::::::::::::::::::::::::::::

::::::::::::::::::::::::::::

... : -.:::.?_!_.:.'." .,:

!i!iiiiiii',ii:,iii i::i iiiili!iiiiil
!!i_!i!!!iiiii_ii_i_iiii_2_i::J:_:!

iiiiiiii!i)iiiiiiiiiil)iiiiiiiiiiii

:::::::::::::::::::::::::

:::::::::::::::::::::::::::::::::::
::2:::::::::::::::::::::::::::::
=======================:.:,:.::

:::::::::::::::::::::::::::::::::::

:,:.:::.:: :.:+::::+:< :
::::::::::::::::::::::::::::::::::

i, i'!iiii!i!ii

i iiiilii

iiiiiiiiii!iiii_iiii_iliiiiiiiil
i:iZ:i:_::ii_i_i_i!i:::i:i
::2:_<_ 2:::<

:_ii_!ii_:i:i:_i::iili_2:1:::

ilili!iiii_iiii!_iiiiii?iiiii'
i_i_iiiiilili!iiii!i!ii:!_iii!iii

iii! iiiiiiiiii !!iii
iiiii!iii!_!i!iiiiii_i_i_i!ii_iiiii

!:i:?i:i:?!L_i:i_i_?i:i:i:
i:_:i:i:!?i:_:i:i:i_:xilSii
.::::::::::::::/ .2:::

i_i_?i:ii_i_i_i_;_i,'_i,i__

:!i_!i!ii_ii!i!i::ii_?ili::i!ii_!i

iiii!ii!!iiiiiiiii!iii!iii!iiiiiii
ii!_i!!!iii!iii:iiii_ii_iiiiiii!!i!

iiiiiiiiiii_!!iiiiii:ii_!::ii!!ii!_

i?!_i:?i.i:_:::??i_!:i:!.!:!::

i::ii:i:iiii!:i : :: ii:_i[i_ii.

i!!iiii!i:ii_ii:::_ii_iiiiii_i:_i:
::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::

:!:i:!:!:i:i:i:]:_:i:i:i:]:i:iS!

iiiiiiiiiiii_iiiiiiiiiiiiiii_i!i!ii
===========================

iiiiiiiiiiiiiiiii!ili!!!!!i!iii!!il
:illi iiii!:i::i! :i.ii:ii:ii_ill
:::::::::::::::::::::::::::::::

!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
:::::::::::::::::::::::::::::::::::

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
:::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::

iiiiiiiiiiiiii!iiiiii]_i_iiiii_i_i_
:::::::::::::::::::::::

iiiiiiiiiiiiiii!iiiiiiiiiiiiiiiiili

::::::::::::::::::::::::::::::

i!iiiiiiiiiiiiiiiiiiiiiiiiiii!iiii_

:::::::::::::::::::::::::

::::::::::::::::::::::::::::::

iii:ii ii
_?_i:__'b!_

 ili,: i ' i' i:ii!,:iiii
i!i

__i!ii_i_:!i_/_

i'_i_iiii:ii_Z,i!,ii_!!_,_

'i_i,iiii._ii!ilii:!:,i:iii
_i_iiiii_ _ _ _ii_2 _

::_i_ b, i V<,

 !iii:ii iiiii ii'iiii iii!iiiiii
::LIII!_%:Z/I

i!i,_:i_ii!iiii!ili!i_!iiii!iiii!!iii
,i:i_ii_ii_!i_i_:_!_i_i_,_
i_i_i,i_i_i_ii:i_i_i_i_:_i_i_I

_i_ii_iiiiii!i!ii!_iiiiii!iiiii!ii_
_i_i_:i:!! !!i_:i.i:i:?ii?i

__ii:i!i:!::ii:_iiiii:iii_
_'iiii:iiiiiiiiiii_ii_i!Si_ii!_
:.:+: +:+ ::.::>:_

_iiiiii!_i!ii!iiiii_iiii!iiiiiiii

.+_+:.:+: :<::+: :.:.:<

?i:?i:!_ii:?i?!:!_!:i:i:i:!_

!!::iiili[xi:i:i:i:!: ii:!iiii:

¸:¸2<:2:2:::::¸:2¸:::::¸¸

_<::+::/::::2 _:_;:::::::_

z.:+: :+:+., :+:+:<_

ii!iiiii_iiiiiiiiiiiiii!iiiiiiiii_i

i:i:i:?!::?i:!:i i:i:i:i:i:i
i : :i:i:]:i:i:_:i%i:i:_:?[:

ii_i!ii!ilili!ii!_iii!iiiiiiii!iiii
_.:: :+:+:+:<+:< :+:.:

__:_ii?::i_::_i_i_i:_::i:!:i

i i!ii!!!i!iiiiiiiiiii!ili!!iiiiii

::i_iii!!_(i__::_'_ii_::i_:!i::_
ii!:i!iiii_ili_i_!iii_ii:i_iiii_

 ii!!,i!i/ii ! ii, ilili,,!i

i:?i:i:i i:i:i!ix :i_i_i_ii_

i!iiii!iiiiiiii_!!_!_iiiiiiiii_ii
!::!:!!:i:_i:_i_:_<i!_i!ii!!il_

!iiiiiiiii!_ili!i:i_i!:i::i_:ii:_

ii:ili!ii_i_i:iiii iiiii_ii_iill

iiii_i_iii.iii_i:?i_:ii:iii:!:!

iiiiii!iiii_iiiii,_!iiii!iiiiiiiiii
iiii!iiiii_i_:!_ii_ii_iiiii:iiii!i!

:.:.:<+ x< _:_:<:.:<
ii_iiiiiiiiiii_ilil_!ii?i!ii_:!

iiiiiiiiiiii_iiii,?_i!!_iii_i
:+:<.:.:+:+:+:_+<.:<

i!::i1!I_I::?:Z!:_:-

i:!_:ili_i:i_ii_ii_!!i!i!iii_i!!_i:
:<+:+:..<: _:......
i.i:i:::?::i:_:_.i?i:i:!.i:i_!.
:3::!.::'::!.:[::::i:!:_:i.i:_

i!iiiiiiiiiiiiii!iiii:ii!iiiiiiiii_

f:L .:.:, , ::. ::::2:::::
: 2:::<.::f : :: . 2:::::.:

ii_iiiiiiiiiiiiiiiiiiiiiiii!iii!ii!

ii!iiii!i!ii_iiiiiii_iiiiiiiiiii_ii
:::::2;<::.::f.:_ < ::'::4

iiiii_i:i_!i!ili!i!_!iiii_iiiiili

!i::%i.i:i:::i:i:_:::!:!:i:_:i
::<:,:.::: :. : :.:.:.:.:: ::::::::::::::::::::::::::::::

: :.>::<: : :<:.:.::.:.::
============================

::::::::::::::::::::::::::::::

::::::::::::::::::::::::::::::::

:ii: [:!::i ::: S!:!?I
:::::::::::::::::::::::::::::::

!
: ::< :.:<.::::::.::
:::: ::::::::::::::::::::
:S:i: :i:i: i ::i 2::

o

w

n

